

УСТРОЙСТВО ПЛАВНОГО ПУСКА SFB

Руководство по эксплуатации

Содержание

1	Назі	ачение и область применения	4
2	Осн	вные технические параметры	4
3	Ком	плектность	8
4	Пра	вила и условия эффективного и безопасного использования	9
5	Мон	гаж и подключение	10
	5.1	Монтаж	10
	5.2	Силовая цепь	11
	5.3	Цепи управления	13
6	Пан	ель управления	15
7	Hac	ройка параметров	17
	7.1	Параметры соединения	17
	7.2	Параметры	18
		7.2.1 Основные параметры	18
		7.2.2 Параметры защиты	18
		7.2.3 Параметры управления	20
	7.3	Список аварий	23
8	Усло	вия транспортирования и хранения	23
9	Утил	изация	24
10	Гара	нтийные обязательства	24
		ение А Коммуникация Modbus	
Πn	ипож	ение Б Плимел схем полключения	31

1 Назначение и область применения

1.1 Устройства плавного пуска SFB товарного знака ONI (далее — УПП) предназначены для плавного запуска трехфазных и однофазных электрических асинхронных двигателей с целью снижения пиковых нагрузок на двигатель и питающую сеть. УПП используются в трехфазных электрических сетях переменного тока с напряжением до 500 В и частотой 50/60 Гц промышленных объектов.

УПП соответствуют требованиям технических регламентов Таможенного союза ТР ТС 004/2011, ТР ТС 020/2011 и ГОСТ Р 50030.4.2 (MЭК 60947-4-2).

1.2 УПП предназначены для использования в среде со степенью загрязнения 2.

2 Основные технические параметры

2.1 Устройство плавного пуска ONI (модель SFB) предназначено для плавного запуска и останова трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные технические параметры представлены в таблице 1.

Таблица 1 — Технические параметры

Параметр	Значение
Номинальное напряжение	220 В, 380 В, 500 В АС (от -15 до +10 %)*
Номинальная частота	50/60 Гц
Номинальное напряжение цепи управления	100÷240 В АС или 24 В DC*
Возможные способы подключения	Соединение по схеме «звезда»
обмоток	Соединение по схеме «внутренний треугольник»
	Соединение по схеме «внешний треугольник»
Начальное напряжение пуска	30÷70 %
Время ускорения	1÷30 c
Время замедления	0÷30 c
Байпас	Встроенный
Количество пусков в час	При нормальной нагрузке или без нагрузки — до 10
	При тяжелой нагрузке — до 5
Промышленная сеть	Modbus RTU (RS-485)*

Продолжение таблицы 1

Параметр	Значение
Защита	Защита от короткого замыкания
	Защита от длительной перегрузки
	Защита от перегрузок класса 10А, 10, 20 и 30
	Дисбаланс фазных токов
	Защита от неправильного чередования фаз
	Защита от обрыва фаз
	Защита от потери напряжения
	SCR защита от перегрева
Категория применения	AC-53a
Допустимые перегрузки	300 % в течение 7 с (при 50 % времени включения и 50
	% времени выключения)
Климатическое исполнение	УХЛЗ.1
по ГОСТ 15150	
Температура эксплуатации	От 0 до 50 °C
Влажность	Относительная влажность 75 % при температуре плюс
	15 °C. Допускается эксплуатация преобразователей при
	относительной влажности 95 % и температуре плюс 25 °C
Температура хранения	От минус 40 до плюс 70 °C
Степень защиты	IP20
по ГОСТ 14254 (IEC 60529)	
Высота над уровнем моря	1000 м (при высоте выше 1000 м номинальный ток
	уменьшается на 1 % на каждые 100 м)
Окружающая среда	Невзрывоопасная, не содержащая агрессивных газов и
l	паров в концентрации, разрушающей металлы и изоля-
	цию, не насыщенная токопроводящей пылью и водяными
	парами
Группа механического исполнения по	M2
ΓΟCT 7516.1	

^{*} В зависимости от заказанной модели.

2.2 Структура и пример условного обозначения артикула устройства SFB показаны на рисунке 1.

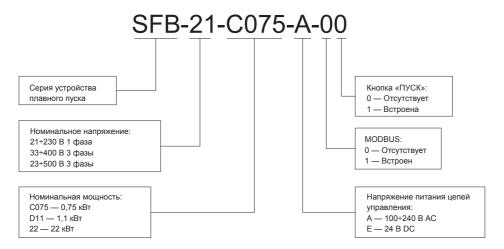


Рисунок 1 — Расшифровка названия модели

2.3 В таблице 2 указаны номинальные токи и габариты для однофазных моделей с номинальным напряжением 230 В.

Таблица 2

Модель	Мощность, кВт	Номинальный	Габарит	Вес, кг
	Напряжение 230 В	ток, А		
SFB-21-D04-X-XX	0,37	2	1	0,8
SFB-21-C055-X-XX	0,55	3	1	0,8
SFB-21-C075-X-XX	0,75	4	1	0,8
SFB-21-D11-X-XX	1,1	6	1	0,8
SFB-21-D15-X-XX	1,5	9	1	0,8
SFB-21-D22-X-XX	2,2	12	1	0,8
SFB-21-D37-X-XX	3,7	20	1	1,0
SFB-21-D55-X-XX	5,5	30	3	1,0
SFB-21-D75-X-XX	7,5	45	3	2,0

2.4 В таблице 3 указаны номинальные токи и габариты для трехфазных моделей с номинальным напряжением 400 В.

Таблица 3

Модель	Мощность, кВт	Номинальный	Габарит	Вес, кг
	Напряжение 400 В	ток, А		
SFB-33-C075-X-XX	0,75	1,5	1	0,8
SFB-33-D11-X-XX	1,1	2,2	1	0,8
SFB-33-D15-X-XX	1,5	3	1	0,8
SFB-33-D22X-XX	2,2	4,5	1	0,8
SFB-33-D37-X-XX	3,7	7,5	1	0,8
SFB-33-D55-X-XX	5,5	11	1	0,8
SFB-33-D75-X-XX	7,5	15	2	1,4
SFB-33-11-X-XX	11	22	2	1,4
SFB-33-15-X-XX	15	30	3	2,4
SFB-33-18-X-XX	18,5	37	3	2,4
SFB-33-22-X-XX	22	45	3	2,4
SFB-33-30-X-XX	30	60	3	2,4
SFB-33-37-X-XX	37	75	3	2,4
SFB-33-45-X-XX	45	90	4	5,0
SFB-33-55-X-XX	55	110	4	5,2
SFB-33-75-X-XX	75	150	4	5,2

2.5 В таблице 4 указаны номинальные токи и габариты для трехфазных моделей с номинальным напряжением 500 В.

Таблица 4

Модель	Мощность, кВт	Номинальный	Габарит	Вес, кг
	Напряжение 500 В	ток, А		
SFB-53-D11-X-XX	1,1	1,5	1	1,0
SFB-53-D15-X-XX	1,5	2,2	1	1,0
SFB-53-D22-X-XX	2,2	3	1	1,0
SFB-53-D37-X-XX	3,7	4,5	1	1,0
SFB-53-D55-X-XX	5,5	7,5	1	1,0
SFB-53-D75-X-XX	7,5	11	1	1,0
SFB-53-11-X-XX	11	15	2	1,4
SFB-53-15-X-XX	15	22	2	1,4
SFB-53-18-X-XX	18	30	3	2,4
SFB-53-22-X-XX	22	37	3	2,4
SFB-53-30-X-XX	30	45	3	2,4
SFB-53-37-X-XX	37	60	3	2,4
SFB-53-45-X-XX	45	75	3	2,4

Продолжение таблицы 4

Модель	Мощность, кВт Напряжение 500 В	Номинальный ток, А	Габарит	Вес, кг
SFB-53-55-X-XX	55	90	4	5,0
SFB-53-75-X-XX	75	110	4	5,2
SFB-53-90-X-XX	90	150	4	5,2

2.6 На рисунке 2 показаны габаритные размеры устройств плавного пуска SFB.

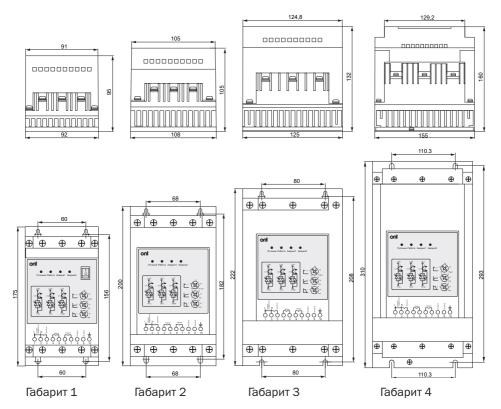


Рисунок 2 — Габаритные размеры устройств плавного пуска

3 Комплектность

Устройство плавного пуска SFB — 1 шт.

Паспорт — 1 экз.

Руководство по эксплуатации — 1 экз.

8 З Комплектность

4 Правила и условия эффективного и безопасного использования

- 1. Перед началом использования устройства плавного пуска ознакомьтесь с руководством по эксплуатации.
- 2. Монтаж, подключение и запуск устройства плавного пуска в эксплуатацию должны осуществляться только квалифицированным электротехническим персоналом в соответствии с «Правилами технической эксплуатации электроустановок потребителей» и «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок потребителей», прошедшим обучение по электробезопасности с присвоением группы не ниже III.
- ЗАПРЕЩАЕТСЯ снимать крышку и прикасаться к печатным платам при включенном напряжении питания. Это может привести к поражению электрическим током.
- 4. Необходимо обеспечить надежное подключение провода заземления к контакту РЕ для обеспечения безопасности персонала.

- 5. Во избежание повреждения УПП и возникновения пожароопасной ситуации запрещается подавать напряжение электросети переменного тока на выходные клеммы «T1/U», «T2/V» и «T3/W», предназначенные для подключения двигателя. Необходимо проследить, чтобы напряжение питания силовой цепи подавалось на клеммы ввода электропитания «L1/R», «L2/S» и «L3/T».
- Устройство плавного пуска проходит тесты на сопротивление изоляции.
 Неправильно проведенные тесты изоляции могут привести к повреждению УПП.
- 7. Монтаж и электрическое подключение устройства плавного пуска должны производиться в соответствии с регламентирующими документами.
- 8. **РЕКОМЕНДУЕТСЯ** один раз в 6 месяцев подтягивать винты контактных зажимов, давление которых со временем ослабевает из-за циклических изменений температуры окружающей среды и пластической деформации металла зажимаемых проводников. Сильный нагрев плохо затянутых электрических соединений может привести к возникновению пожароопасной ситуации.
- 9. **ЗАПРЕЩАЕТСЯ** подключать на выход УПП компенсаторы реактивной мощности и емкостную нагрузку. При необходимости компенсатор реактивной мощности можно подключить со стороны сети питания.

 При подключенном питании напряжение присутствует на входе и выходе УПП, даже если не подана команда «ПУСК».

5 Монтаж и подключение

5.1 Монтаж

5.1.1 Устройства плавного пуска могут устанавливаться отдельно или группами. При установке в электротехнический шкаф необходимо обеспечить вентиляцию для отвода тепла, чтобы предотвратить остановку устройства из-за перегрева. Тепловые потери устройства можно примерно определить по формуле

$$Pn = 3 \times Ie (BT),$$
 (1)

где: Рп — тепловые потери;

le — номинальный ток электродвигателя.

- 5.1.2 При установке в электротехнический шкаф без вентиляции тепловые потери должны быть увеличены в 12 раз.
- 5.1.3 При установке устройств необходимо следовать рекомендациям из рисунка 3.

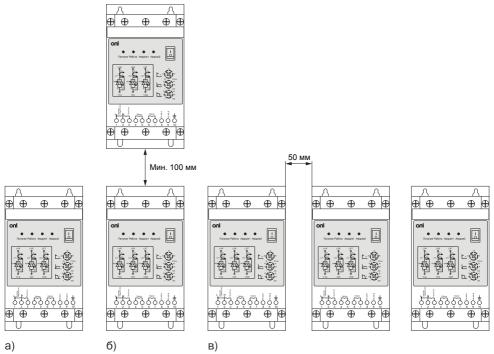


Рисунок 3 — Установка устройств: a) одиночная; б) групповая вертикальная; в) групповая стенка к стенке

10

5.2 Силовая цепь

5.2.1. Устройства плавного пуска SFB в зависимости от модели имеют два типа силовой цепи, как показано на рисунке 4.

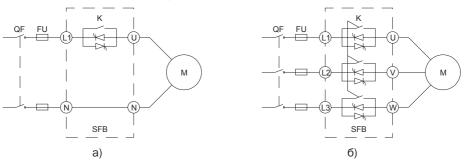


Рисунок 4 — Схема силовой цепи: а) для моделей с однофазным питанием; б) для моделей с трехфазным питанием, где: QF — выключатель нагрузки, FU — предохранитель, K — электромеханическое реле встроенного байпаса

Рекомендуемое сечение проводника — от 6 до 50 мм 2 в зависимости от мощности. Рекомендуемый момент затяжки силовых клемм — 4 H \cdot м. Выбираемый проводник должен соответствовать отраслевым стандартам.

5.2.2 Назначение клемм силовой цепи устройства плавного пуска представлено в таблице 5.

Таблица 5

Маркировка клеммы	Название клеммы	Функция		
SFB, 1 фаза, 230 B				
L/R, N	Входные клеммы питания	Подключение однофазного питания		
T/U, N	Выходные клеммы	Подключение однофазного двигателя		
SFB, 3 фазы, 400 и 500 В				
L1/R, L2/S, L3/T	Входные клеммы питания	Подключение трехфазного питания		
T1/U, T2/V, T3/W	Выходные клеммы	Подключение трехфазного двигателя		

5.2.3 Возможные схемы подключения электродвигателя к устройству плавного пуска показаны на рисунке 5.

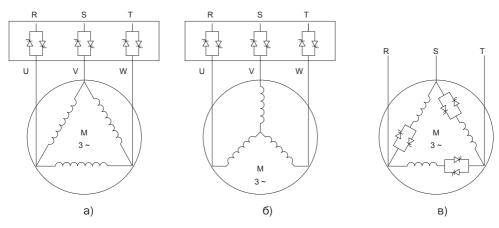


Рисунок 5 — Схемы подключения обмоток электродвигателя: a) по схеме «треугольник»; б) по схеме «звезда»; в) по схеме «внутренний треугольник»

Выбор схемы подключения электродвигателя зависит от номинального применения двигателя. Соответствие номинального напряжения и схемы подключения указано на заводской табличке электродвигателя.

При использовании схемы «внутренний треугольник» (рисунок 5в) необходимо учесть, что ее можно применить только с двигателями, имеющими 6 клемм подключения, так как силовые тиристоры устройства включаются во внутреннею цепь электродвигателя. При подключении обмоток таким образом протекающий по ним ток будет равен 1/1,72 от номинального тока.

5.2.4 Соединение обмоток электродвигателя с клеммами устройства плавного пуска при схеме «внутренний треугольник» показано на рисунке 6.

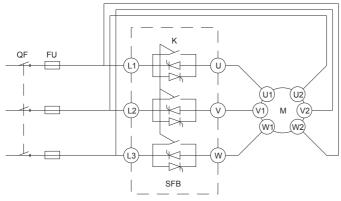


Рисунок 6 — Соединение УПП и обмоток электродвигателя по схеме «внутренний треугольник»

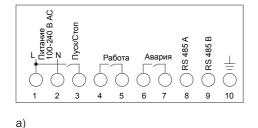

5.2.5 В таблице 6 указаны применяемые быстродействующие предохранители силовой цепи, которые устанавливаются на входе устройства плавного пуска.

Таблица 6

Номинальный ток УПП, А	SCRI2T (A2S)	Номинальный ток предохранителя, А
1,5	70	5
2,2	150	10
3	270	10
4,5	610	16
7,5	1700	25
11	3630	32
15	5000	40
22	7500	50
30	10000	63
37	11000	100
45	12000	160
60	15000	200
75	18000	250
90	40000	315
110	60000	315
150	100000	400

5.3 Цепи управления

5.3.1 Устройства плавного пуска SFB поставляются с двумя вариантами плат управления, которые отличаются номинальным напряжением питания. Диаграмма клемм управления показана на рисунке 7.

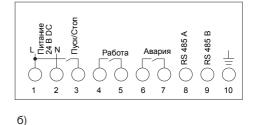


Рисунок 7 — Диаграмма клемм управления: а) плата управления с напряжением питания $100 \div 240 \text{ B AC}$; б) плата управления с напряжением питания 24 B DC

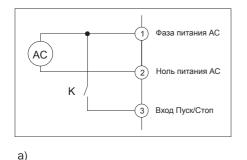

5.3.2 Описание назначения клемм управления дано в таблице 7.

Таблица 7

Маркировка клеммы	Номер	Название	Описание
L	1	Питание цепей управления	Питание цепей управления для плат с но-
N	2		минальным напряжением 100÷240 В АС
«+»	1	Питание цепей управления	Питание цепей управления для плат с
«-»	2		номинальным напряжением 24 B DC
Пуск/Стоп	3	Пуск/Стоп сигнал управления	Клемма входа сигнала на «Пуск» и «Останов»
Работа	4	Выход реле «Работа»	Когда УПП в состоянии «Работа», «Ускорение», «Замедление» и «Байпас», реле
Работа	5	Общая клемма реле «Работа»	замыкается. Номинальный ток реле— 5 A, 220 B AC
Авария	6	Выход реле «Авария»	Когда УПП в состоянии «Авария», реле
Авария	7	Общая клемма реле «Авария»	замыкается. Номинальный ток реле — 5 A, 220 B AC
A RS-485	8	RS485, линия A	Клеммы подключения промышленной
B RS-485	9	RS485, линия В	сети MODBUS*
Ţ	10	Клемма заземления	

^{*} Только для версии устройств плавного пуска со встроенным MODBUS SFB-XX-XXX-X-X1.

- 5.3.3 Необходимо, чтобы номинальное напряжение платы управления устройства плавного пуска соответствовало напряжению питающей сети платы. В противном случае плата управления будет повреждена и может выйти из строя.
- 5.3.4 При подключении платы управления с номинальным напряжением 24 В необходимо соблюдать полярность.
- 5.3.5 На рисунке 8 показаны схемы управления пуском и остановом УПП внешними кнопками и приборами. Для запуска УПП необходимо замкнуть клеммы 1 и 3, для остановки эти клеммы должны быть разомкнуты.

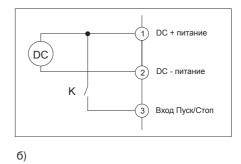


Рисунок 8 — Схема управления: а) плата управления с напряжением питания $100 \div 240$ В АС; б) плата управления с напряжением питания 24 В DC

5.3.6 Если для управления устройством используется длинный кабель, необходимо поставить промежуточное реле для предотвращения ложных срабатываний и исключения влияния наводящегося напряжения на длинной линии.

6 Панель управления

6.1 Панель управления служит для настройки устройства и индикации состояния. С помощью панели управления можно настроить время ускорения, время замедления и начальное напряжение. Остальные параметры настраиваются с помощью протокола Modbus. Внешний вид панели управления показан на рисунке 9.

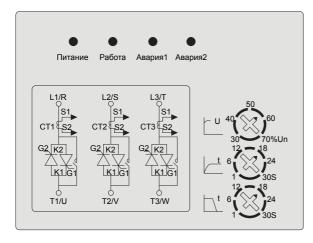


Рисунок 9 — Внешний вид панели управления

6 Панель управления 15

6.2 Описание индикаторов и регулировочных потенциометров приведено в таблице 8.

Таблица 8

Символ	Название	Функция
12 18 24 30S	Потенциометр настройки времени ускорения	Настраивает время ускорения электродвигателя от 1 до 30 с
t 6 12 18 24 30S	Потенциометр настройки времени замедления	Настраивает время замедления электродвигателя от 0 до 30 с. При установке значения «О» двигатель будет замедляться выбегом
U 40 50 60 70%Un	Потенциометр настройки начального напряжения	Настраивает начальное напряжение в пределах от 30 до 70 % номинального напряжения
Питание	Светодиод «Питание»	Горит, когда на УПП подано питание
Работа	Светодиод «Работа»	Горит, когда УПП работает. Мерцает, когда УПП находится в фазе ускорения или замедления
Авария1	Светодиод «Авария 1»	Согласно таблице 8
Авария2	Светодиод «Авария 2»	

6 Панель управления

6.3 В таблице 9 показана индикация аварийных сообщений.

Таблица 9

Авария	Авария 1	Авария 2
Неправильное чередование фаз	0	0
Потеря фазы / Нет напряжения	0	0
Превышение тока	0	•
Перегрузка	•	0
Дисбаланс токов	•	0
Перегрев	0	•

Знак « О » обозначает мерцание светодиода.

7 Настройка параметров

Основные настройки устройства плавного пуска, такие как время ускорения, время замедления и начальное напряжение, задаются с помощью панели управления. Остальные настройки можно задать с помощью подключения к устройству по интерфейсу RS485, протокол MODBUS RTU. Настройки по умолчанию подобраны таким образом, что обеспечивают бесперебойную и необходимую работу системы в большинстве случаев, поэтому изменять их необходимо только в крайних случаях.

7.1 Параметры соединения

В таблице 10 указаны настройки соединения по протоколу MODBUS.

Таблица 10 — Настройки сети

Параметр	MODBUS-адрес	Диапазон настроек	По умолчанию
Адрес устройства	40017	1÷127	1
Скорость соединения	40018	0: 1200 BPS 1: 2400 BPS 2: 4800 BPS 3: 9600 BPS 4: 19200 BPS	3: 9600 BPS
Четность	40019	0: ECC 1: ODD 2: нет	0: ECC

Знак « О » обозначает, что светодиод выключен.

Знак « ● » обозначает, что светодиод включен.

ВНИМАНИЕ! После настройки параметров соединения их нельзя сбросить программными средствами. Для сброса параметров необходимо включить устройство и сделать следующие шаги:

- Шаг 1. Снять панель управления.
- Шаг 2. Подать питание на плату управления.
- Шаг 3. Установить DIP-переключатель SW2 в верхнее положение на 2 с.
- Шаг 4. Вернуть DIP-переключатель SW2 в исходное положение.
- Шаг 5. Выключить питание платы управления.

7.2 Параметры

7.2.1 Основные параметры

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
FLC, номинальный ток УПП	40001 0÷110 A		Заводская настройка
Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
FLA, ток двигателя	40002	0÷110 A	Заводская настройка
Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Режим соединения	40003	0 — Внешнее 1 — Внутренние	0

7.2.2 Параметры защиты

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Уровень превышения тока	40005	200÷850 %	500 %
Время задержки превышения тока	40006	0,5÷1 c	0,5 c

Устройство плавного пуска SFB имеет две защиты по току:

- 1. Если ток будет больше, чем 850 % значения FLC, устройство плавного пуска немедленно отключит выход и включит индикацию «Авария». Реле «Авария» замкнется.
- 2. Если ток будет выше уровня превышения тока (выше тока двигателя FLA), то через время задержки превышения тока устройство отключит выход и включит индикацию «Авария». Реле «Авария» замкнется.

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Защита от перегрузки	40007	100÷200 %	115 %
Класс защиты по перегрузке	40008	0: Класс 10A 1: Класс 10 2: Класс 20 3: Класс 30	0: Класс 10А

Рекомендуется использовать класс 10A защиты от перегрузки (перегрева электродвигателя). Временные диаграммы защиты от перегрузки показаны на рисунке 10.

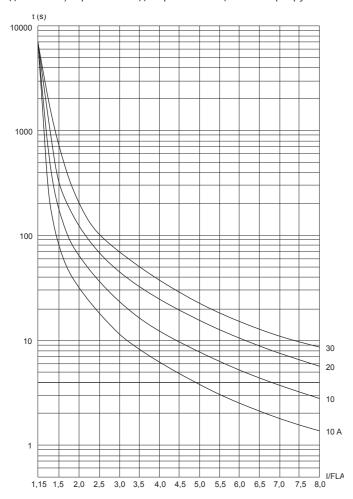


Рисунок 10 — Диаграмма времени срабатывания защиты от перегрузки

В таблице 11 показана зависимость времени срабатывания защиты от перегрузки от класса и кратности превышения тока.

Таблица 11 — Время срабатывания защиты от перегрузки

Класс	Кратность тока						
перегрузки	8	7	6	5	4	3	2
	Минимальное время срабатывания защиты от перегрузки, с						
10A	1,6	2	3	4	6	12	26
10	3	4	6	8	13	23	52
20	5	6	9	12	19	35	78
30	7	9	13	19	29	52	112

Устройство плавного пуска осуществляет защиту от неправильного чередования фаз.

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Проверка чередования фаз	40009	0: Выключено 1: Включено	1: Включено

Кроме описанных настроек защиты устройство плавного пуска SFB реализует следующие защиты, которые приводят к остановке по аварии:

- 1. Защита от перегрева. При температуре радиатора выше 85 °C сработает защита от перегрева.
 - 2. Защита от потери фазы.
 - 3. Короткое замыкание силовых ключей.
- 4. Дисбаланс фазных токов. Аварийный останов будет осуществлен при разнице фазных токов двигателя (FLA) более чем 20 %.

7.2.3 Параметры управления

К параметрам управления относятся команда «Пуск/Стоп», время ускорения, время замедления, начальное напряжение и сброс аварии.

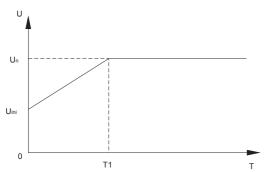
Запустить устройство можно тремя способами:

- 1. С помощью клемм управления.
- 2. Yepes Modbus.
- 3. На моделях SFB-XX-XXX-X-X1 с помощью кнопки на панели управления.

Для управления пуском/остановом и сбросом аварии в устройстве имеются 8 катушек (00001÷00008).

Параметр	Modbus-адрес	Диапазон настроек
Пуск/Стоп	00001	0: Стоп; 1: Пуск*
Резерв	00002	
Резерв	00003	
Резерв	00004	
Резерв	00005	
Резерв	00006	
Резерв	00007	
Сброс аварии	00008	0: Нет; 1: Сброс**

^{*} Когда команда «Пуск» приходит по промышленной сети (00001 установлен на 1), остановка может быть произведена путем установки 00001 на 0 или отключения питания устройства.


Параметры «время ускорения», «время замедления» и «начальное напряжение пуска» настраиваются с помощью потенциометров на панели управления и не могут быть настроены с помощью Modbus. Эти параметры доступны только для чтения.

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Время ускорения	40010	1÷30 c	Потенциометр панели
Время замедления	40011	0÷30 c	Потенциометр панели
Начальное напряжение	40012	30÷70 %	Потенциометр панели

^{**} Перед сбросом аварии необходимо снять сигнал запуска с клемм управления для установки причин аварийного останова. В противном случае устройство запустит двигатель сразу после сброса.

На рисунке 11 показана диаграмма фазы запуска устройства плавного пуска.

Un — номинальное напряжение

Uini — начальное напряжение пуска

T1 — время ускорения

При запуске напряжение на выходе УПП возрастает от начального напряжения пуска Uini до номинального Un за время ускорения T1

Рисунок 11 — Диаграмма запуска

Начальное напряжение устанавливается минимально необходимым, чтобы при запуске в начале ускорения не происходило заклинивание ротора.

Рекомендуемые настройки параметров запуска и останова указаны в таблице 12.

Таблица 12 — Параметры запуска

Тип нагрузки	Время	Время	Начальное	Кратность
	ускорения, с	замедления, с	напряжение, %	пускового тока
Центробежный вентилятор	10	0	30	3,5
Центробежный насос	10	20	30	3,0
Поршневой компрессор	10	0	30	3,0
Подъемник	10	10	60	3,5
Вращающийся конвертер	10	0	30	2,5
Миксер	10	0	60	3,5
Дробилка	10	10	40	3,5
Спиральный компрессор	10	0	40	3,5
Ленточный конвейер	10	0	40	3,5

22

7.3 Список аварий

В таблице 13 указан список возможных аварий и неисправностей и способы их устранения.

Таблица 13

Авария	Причины	Способ устранения
Потеря двигателя	1. Обрыв кабеля. 2. Неисправность тиристоров	1. Проверьте соединение между двигателем и УПП. 2. Проверьте тиристоры и обратитесь в сервисный центр
Потеря фазы	Обрыв питающего кабеля	Проверьте соединение питающей сети и УПП
Пониженное напряжение	Напряжение питание ниже номинального	Проверьте уровень напряжения питания
Превышение напряжение	Напряжение питания выше номинального	Проверьте уровень напряжения питания
Перегрузка	Повышенный ток во время работы	 Уменьшите нагрузку. Увеличьте время ускорения. Примените УПП большей мощности
Пониженный ток	Ток слишком мал	1. Проверьте нагрузку. 2. Проверьте кабель между двигателем и УПП
Превышено время ускорения	Время ускорения больше 60 с	1. Проверьте мощность двигателя и УПП. 2. Проверьте вращение двигателя
Неправильное чередование фаз	Фазы питания подключены в неправильной последовательности	Подключите фазы питания в правильной последовательности

8 Условия транспортирования и хранения

- 8.1 Транспортирование УПП в части воздействия механических факторов осуществляется по группе С и Ж ГОСТ 23216, климатических факторов по группе 4 (Ж2) ГОСТ 15150.
- 8.2 Транспортирование УПП допускается любым видом крытого транспорта в упаковке изготовителя, обеспечивающей предохранение упакованных изделий от механических повреждений, загрязнения и попадания влаги.
- 8.3 Хранение УПП производится в упаковке изготовителя в помещениях с естественной вентиляцией при температуре окружающего воздуха от минус 40 до плюс 70 °С и относительной влажности не более 75 % при температуре плюс 15 °С. Допускается хранение УПП при относительной влажности 95 % и температуре плюс 25 °С.

9 Утилизация

- 9.1 По истечении срока службы изделие подлежит передаче специальной организации по переработке вторсырья.
- 9.2 При утилизации необходимо разделить детали УПП по видам материалов и сдать в специализированные организации по приемке и переработке вторсырья.

10 Гарантийные обязательства

- 10.1 Гарантийный срок эксплуатации УПП 1 год со дня ввода в эксплуатацию, но не более 1,5 лет с даты продажи при условии соблюдения потребителем правил монтажа, эксплуатации, транспортирования и хранения.
- 10.2 В период гарантийных обязательств и при возникновении претензий обращаться к продавцу или в организации:

Российская Федерация ООО «ИЭК ХОЛДИНГ»

142100, Московская область, город Подольск, проспект Ленина, дом 107/49, офис 457 Тел./факс: +7 (495) 502-79-81 www.oni-system.com

9 Утилизация

Приложение A Коммуникация Modbus

Характеристики RS-485

Асинхронное последовательное соединение.

Полудуплекс.

Протокол соединения Modbus RTU.

Бит данных

Бит данных равен 8.

Проверка четности

Проверка четности может быть: Heт/ECC/ODD.

Стоповые биты

Если проверка четности отключена, то применяются 2 стоповых бита. Если проверка четности включена, то применяется 1 стоповый бит.

Время ответа

Нормальное время ответа: 4 мс ≤ время ответа ≤ 40 мс.

Долгое время ответа: время ответа ≤ 200 мс.

Примечание

Частые запросы будут увеличивать время ответа устройства SFB.

При управлении по протоколу рекомендуемая частота опроса 100 мс.

Устройство SFB не поддерживает широковещательный формат.

Если устройство подключено последним в линии, необходимо установить терминальный резистор с сопротивлением 120 Ом.

Максимальное количество устройств SFB в линии — 32.

Максимальная длина линии должна быть менее 1,5 км. При длине линии более 1,5 км необходимо использовать промежуточные реле.

В таблице A.1 указаны поддерживаемые функции MODBUS.

Таблица А.1 — Команды Modbus

Функция	Описание	Функция SFB
01	Чтение статуса катушки	Чтение статуса инструкции
02	Чтение статуса входов	Чтение статусов входов/выходов
03	Чтение регистра	Чтение параметров
04	Чтение аналового регистра	Чтение параметров мониторинга
05	Установка управляющей катушки	Управление УПП SFB
06	Установка регистра	Редактирование параметров
08	Диагностика	Проверка соединения

В таблице А.2 указаны возможные действия и количество групп регистров.

Таблица А.2 — Группы регистров

Параметры	Адрес (4 цифры)	Кол-во регистров	Действия
Инструкции (управление)	00001÷00008	8	Чтение/запись
Статус входов/выходов	10001÷10008	8	Чтение
Мониторинг параметров	30001÷30016	16	Чтение
Установки параметров	40001÷40032	32	Чтение/запись

Инструкции (управление)

Инструкции управления указаны в таблице А.З.

Таблица А.3 — Инструкции

Параметр	Modbus-адрес	Диапазон настроек
«Пуск/Стоп»	00001	0: Стоп; 1: Пуск*
Резерв	00002	
Резерв	00003	
Резерв	00004	
Резерв	00005	
Резерв	00006	
Резерв	00007	
Сброс аварии	00008	0: Нет; 1: Сброс**

Адреса статуса входов/выходов указаны в таблице А.4.

Таблица А.4 — Статусы/выходов входов

Параметр	Modbus-адрес	Диапазон настроек
Внешний «Пуск/Стоп»	10001	0: ОТКЛ.; 1: Вкл.
Внутренний «Пуск/Стоп»	10002	0: ОТКЛ.; 1: Вкл.
DIP 1	10003	0: ОТКЛ.; 1: Вкл.
DIP 2	10004	0: ОТКЛ.; 1: Вкл.
Резерв	10005	
Резерв	10006	
Резерв	10007	
Резерв	10008	
		I

В таблице А.5 указаны параметры мониторинга.

Таблица А.5 — Мониторинг

Параметр	Modbus-адрес	Диапазон настроек
Ток фазы А	30001	0÷65 535 % FLA
Ток фазы В	30002	0÷65 535 % FLA
Ток фазы С	30003	0÷65 535 % FLA
Начальное напряжение	30004	0÷512. Начальное напряжение, % = 30 + int ((512 – n) / 32) × 3
Время ускорения	30005	0÷512. Время ускорения = (512 – n) / 16
Время замедления	30006	0÷512. Время замедления = (512 — n) / 16
Средний ток	30007	0÷65 535 % FLA
Частота	30008	0÷65 535 Гц
Статус системы	30009	Бит 0: Стоп Бит 1: Ускорение Бит 2: Байпас включен Бит 3: Замедление Бит 4: Работа Бит 5: Достигнуто полное напряжение Бит 6: Резерв Бит 7: Авария
Статус входов	30010	Бит 0: Вход «Пуск» (Внешний) Бит 1: Вход «Пуск» (Внутренний) Бит 4: Температурный переключатель Бит 7: DIP переключатель 1 (Выбор внутреннего/внешнего входа пуск)
Статус аварии	30011	

Продолжение таблицы А.5

Параметр	Modbus-адрес	Диапазон настроек
Время наработки часы	30012	0÷65 535 ч
Время наработки × 0,1 с	30013	0÷65 535 ч × 0,1 с
Время пуска	30014	0÷65 535 ч
Время аварии	30015	0÷65 535 ч
Резерв	30016	
Авария 1	30017	Детальная информация — в таблице А.6
Авария 2	30018	Детальная информация — в таблице А.6
Авария 3	30019	Детальная информация — в таблице А.6
Авария 4	30020	Детальная информация — в таблице А.6
Авария 5	30021	Детальная информация — в таблице А.6
Авария 6	30022	Детальная информация — в таблице А.6
Авария 7	30023	Детальная информация — в таблице А.6
Авария 8	30024	Детальная информация — в таблице А.6
Авария 9	30025	Детальная информация — в таблице А.6
Авария 10	30026	Детальная информация — в таблице А.6
Резерв	30026÷30032	

Таблица А.6 — Коды аварий

Код аварии	Описание
0	Нет ошибки
1	Перегрев
2	Потеря фазы / нет напряжения
3	Превышение тока
4	Перегрузка
5	Дисбаланс тока
6	Неправильное чередование фаз
7	EEPROM не может быть записан
8	Другие аварии и ошибки

Продолжение таблицы А.7

В таблице А.7 указаны адреса параметров, которые можно настроить и прочитать.

Таблица А.7 — Параметры

Параметр	Modbus-адрес	Диапазон настроек
Ток нагрузки (FLA)	40002	1÷100 A
Резерв	40003	
Резерв	40004	
Порог превышения тока	40005	500÷850 % FLA
Время превышения тока	40006	0,1÷1 c
Уровень перегрузки	40007	100÷200 % FLA
Класс перегрузки	40008	0: Класс 10A 1: Класс 10 2: Класс 20 3: Класс 30
Резерв	40009	
Начальное напряжение	40010	0÷512. Начальное напряжение, % = 30 + int ((512 -n) / 32) × 3
Время ускорения	40011	0÷512. Время ускорения = (512 - n) / 16
Время замедления	40012	0÷512. Время замедления = (512 - n) / 16
Резерв	40013	
Резерв	40014	
Защита от неправильного чередования фаз	40015	0: Выключено 1: Включено
Резерв	40016	
Адрес устройства	40017	1÷127
Скорость соединения	40018	0: 1200 BPS 1: 2400 BPS 2: 4800 BPS 3: 9600 BPS 4: 19200 BPS
Четность	40019	0: ECC 1: ODD 2: HeT

Пример считывания параметров

Начальное напряжение

При считывании регистра 40010 или 30004 возвращается число в шестнадцатеричном виде 01F9, которое переводится в десятеричное 505. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение: $30 + int ((512 - 505) / 32) \times 3 = 30 \%$.

Время ускорения

При считывании регистра 40011 или 30005 возвращается число в шестнадцатеричном виде 0000, которое переводится в десятеричное 0. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение: int (512 - 0) / 16 = 32 c.

Время замедления

При считывании регистра 40012 или 30006 возвращается число в шестнадцатеричном виде 01BA, которое переводится в десятеричное 442. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение: int (512 - 442) / 16 = 4 с.

Приложение Б Пример схем подключения

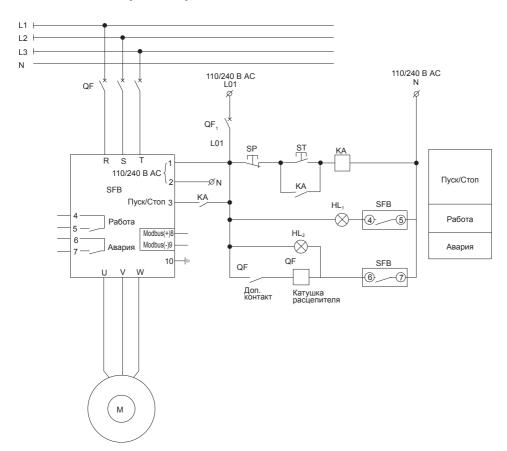


Рисунок Б.1 — Пример схемы подключения трехфазного УПП с платой управления с питанием $100 \div 240 \text{ B AC}$

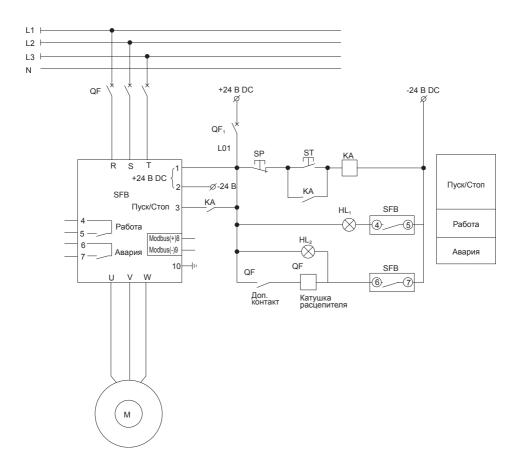


Рисунок Б.2 — Пример схемы подключения трехфазного УПП с платой управления с питанием 24 В DC

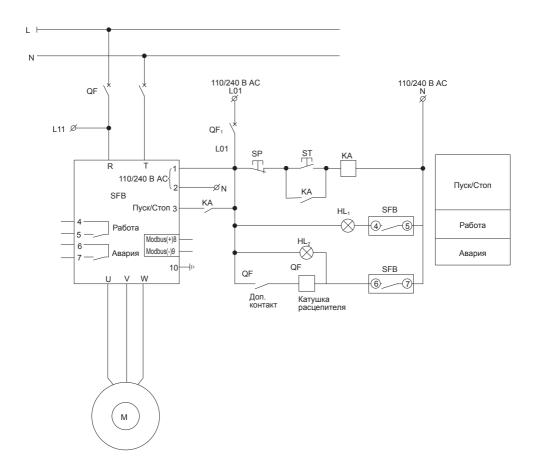


Рисунок Б.3 — Пример схемы подключения однофазного УПП с платой управления с питанием $100 \div 240~\text{B}$ AC

Приложение Б / 33

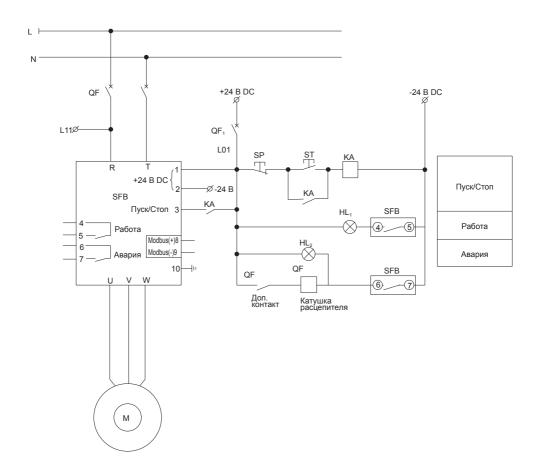


Рисунок Б.4 — Пример схемы подключения однофазного УПП с платой управления с питанием 24 В DC

Адрес для обращения потребителей:

Российская Федерация 000 «ИЗК ХОЛДИНГ»

142100, Московская область, город Подольск, проспект Ленина, дом 107/49, офис 457 Телефон: +7 (495) 502-79-81 www.oni-system.com

Бесплатный номер технической поддержки производителя:

8-800-222-42-05